Technical Article

Digital Signals and Controls

By Gary Bocock, Technical Director, XP Power

Digital signals and controls are in increasing demand in building management, telecommunications and networking applications. One of the main requirements is for intelligent microcontroller-based interfaces to be incorporated into the power supplies which drive the overall system.

An example of such an interface developed by XP Power, and implemented on its EMH250 and 350 high density power supplies enables the control of a number of power supply functions and monitoring of various parameters.

Communication is achieved using the industry standard PMBus protocol over a three wire (SDA, SCL & Gnd) I2C interface. The power supply acts as the slave device and is accessed via a unique 7-bit address allowing up to 30 individual units to communicate over a common bus.

Controls

The digital interface allows the output voltage to be adjusted via the PMBus and the microcontroller also activates the overload protection that can also be programmed over this bus. The microcontroller can be factory programmed to cater for application specific requirements such as high peak loads & timed power boost. As standard, the interface allows voltage adjustment of +/-10% and overload protection adjustment from 0 – 110%.

Signals

The following parameters are measured by the microcontroller and communicated via the PMBus:

- Output Voltage
- Output Current
- Fan Supply Voltage
- Internal Ambient Temperature
- Fan Status (Fan warning alert after 30 seconds. Fan fail alert after 1 minute 30 seconds)

Supported PMBus Commands

Command Code	Command Name	SMBus Transaction Type	Number of Data Bytes
81h	STATUS_FANS_1_2	Read Byte	1
8Ah	READ_VCAP	Read Word	2
8Bh	READ_VOUT	Read Word	2
8Ch	READ_IOUT	Read Word	2
8Dh	READ_TEMPERATURE_1	Read Word	2
98h	PMBUS_REVISION	Read Byte	1
99h	MFR_ID	Block Read	Variable
9Ah	MFR_MODEL	Block Read	Variable
9Bh	MFR_REVISION	Block Read	Variable
9Eh	MFR_SERIAL	Block Read	Variable
D0h	READ_VFAN*	Read Word	2
E4h	VOLTAGE_TRIM*	Write Byte	1
E5h	CURRENT_LIMIT_TRIM*	Write Byte	1

Figure 1 - Supported PMBus Commands

*These are manufacturer specific commands

Data transfer

All data transactions are initiated by a START (S) bit where the data line (SDA) is pulled from low to high while the clock (SCL) is held high. Subsequent to this the 7-bit device address is sent followed by a WR bit (R/W=0) and then an acknowledge (A) bit. Acknowledge bits are sent from the slave to the master and vice versa depending on the transaction type. Following this the 8-bit PMBus command is sent followed by an A bit. This start procedure is standard for all commands and any differences will be found by the second A bit.

All transactions end with a stop (P) bit. The three standard transaction types are shown below in Figure 2 together with a typical timing diagram for the write byte transaction. Grey boxes indicate that the data is being transferred from the slave to the master. For further information refer to the PMBus 1.1 specification.

Read Word transaction

1	7	1	1	8	1	1	7	1	1	8	1	8	1	1
S	Slave Address	WR	A	Command Code	A	S	Slave Address	Rd	A	Data Byte	A	Data Bye High	A	Р

Block Read transaction

1	7	1	1	8	1	1	7	1	1	8		1
S	Slave Address	WR	A	Command Code	A	Sr	Slave Address	Rd	A	Data Court	it = N	A
	8	1		8		1	8			1	1	į., .,
	Data Byte 1	A		Data Byte 2		A	Data By	te N		A	P	

Figure 2 – data byte structure

Custom commands

STATUS_FANS_1_2 bits. These bits change depending on the fault condition generated. After 30 seconds of the fan tacho output measuring a fault condition the Fan 1 warning is flagged, after an additional 30 seconds of the tacho output measuring a fault condition Fan 1 failure is flagged.

ST	ATUS_I	FANS_1_2 Byte (greyed	d out sections are not currently used)
	bit 7 Fan1 Faut	AVANAN Fact Warner	bit 1
	Nom	nal fan operation – under	normal operating conditions the STATUS_FANS_1_2 byte will read 0
	Fan	1 Warning - bit 5 is set to	
	FAN	1 Fault - bit 7 is set to 1 (A0h) Note Fan 1 Warning bit will still be set as this precedes a Fan 1
Ċ	Faul	VIIIIIN 1	<i>VIIIIIIIIIIIIIIIIIIIIIIIIIIIIII</i>

Figure 3 – Status fans fault indication

VOLTAGE_TRIM and CURRENT_TRIM commands

Both of these commands are used to set internal references to trim the output voltage & set the current limit. Should the device power down the last known values for both outputs are restored on power up.

The VOLTAGE_TRIM command accepts a HEX value between 0 and 65; any value greater than 65 is ignored and assumed to be 65. 0 and 65 will set the minimum and maximum trim values as per the power supply specification with the default set at nominal output voltage during manufacture.

The CURRENT_TRIM command also accepts a HEX value between 0 and 65; again any value above 65 is assumed to be 65.0 and 65 will set the current limit between its minimum and maximum values as per the power supply specification.

READ_VFAN

This command operates in the same way as standard PMBus read voltage commands.

Summary

The modular structure adopted for the device code allows for it to be readily adapted facilitating changes to meet customer and application specific requirements. Additional functions include the ability to interrogate serial number, model number and manufacturing date codes.

North American HQ

XP Power 990 Benecia Avenue, Sunnyvale, CA 94085 Phone : +1 (408) 732-7777 Fax : +1 (408) 732-2002 Email : nasales@xppower.com

European HQ

XP Power Horseshoe Park, Pangbourne, Berkshire, RG8 7JW Phone : +44 (0)118 984 5515 : +44 (0)118 984 3423 Fax : eusales@xppower.com Email

German HQ

XP Power	
Auf der Höh	e 2, D-28357 Bremen, Germany
Phone	: +49 (0)421 63 93 3 0
Fax	: +49 (0)421 63 93 3 10
Email	: desales@xppower.com

Asian HQ

XP Power 401 Commonwealth Drive, Haw Par Technocentre, Lobby B #02-02, Singapore 149598 Phone : +65 6411 6900

⊦ax	: +65 6741 8730
Fmail	: apsales@xppower.cc

: apsales@xppower.com : www.xppowerchina.com / Web www.xppower.com

North American Sales Offices

Toll Free	+1	(800)	253-0	490
Central Region	+1	(972)	578-1	530
Eastern Region	+1	(973)	658-8	8001
Western Region	+1	(408)	732-7	777

European Sales Offices

Austria	+41 (0)56 448 90 80
Belgium	.+33 (0)1 45 12 31 15
Denmark	+45 43 42 38 33
Finland	+46 (0)8 555 367 01
France	.+33 (0)1 45 12 31 15
Germany	.+49 (0)421 63 93 3 0
Italy	+39 039 2876027
Netherlands	.+49 (0)421 63 93 3 0
Norway	+47 63 94 60 18
Sweden	. +46 (0)8 555 367 00
Switzerland	. +41 (0)56 448 90 80
United Kingdom	.+44 (0)118 984 5515

Asian Sales Offices

Shanghai..... +86 21 51388389 Singapore +65 6411 6902

Distributors

Australia	+61 2 9809 5022	Amtex
Balkans	+386 1 583 7930	Elbacomp
Czech Rep	+420 235 366 129	Vums Powerprag
Czech Rep	+420 539 050 630	Koala Elektronik
Estonia	+372 6228866	Elgerta
Greece	+30 210 240 1961	ADEM Electronics
Hungary	+36 1 705 2345	JAMSoft
India	+91 80 4095 9330/31/32	Digiprotech
Israel	+972 9 7498777	Appletec
Israel	+972 (0)73 7001212	Cidev
Japan	+81 48 864 7733	Bellnix
Korea	+82 31 422 8882	Hanpower
Latvia	+371 67501005	Caro
Lithuania	+370 5 2652683	Elgerta
Poland	+48 22 8627500	Gamma
Portugal	+34 93 263 33 54	Venco
Romania	+4 0348 730 920	Multichron T.L.
Russia	+7 (495)234 0636	Prosoft
Russia	+7 (812)325 5115	Gamma
South Africa	+27 11 453 1910	Vepac
Spain	+34 93 263 33 54	Venco
Taiwan	+886 3 3559642	Fullerton Power
Turkey	+90 212 465 7199	EMPA

Global Catalog Distributors

Americas	Newark	newark.com
Europe	Farnell	farnell.com
Asia	element14	element14.com

